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The linear stability of doubly diffusive convection is considered for a two-dimensional,
Boussinesq fluid in a tall thin slot. For a variety of boundary conditions on the slot
walls, instability sets in through zero wavenumber over a wide range of physical con-
ditions. Long-wave equations governing the nonlinear development of the instability
are derived. The form of the long-wave equations sensitively depends on the thermal
and salt boundary conditions; the possible long-wave theories are catalogued. Finite-
amplitude solutions and their stability are studied. In some cases the finite-amplitude
solutions are not the only possible attractors and numerical solutions presenting the
alternatives are given. These reveal temporally complicated dynamics.

1. Introduction
Convection in a doubly diffusing fluid is an important physical problem in a variety

of contexts. Its implications have wide application in geophysics, astrophysics and
industrial processes. In the standard idealization of the problem, one considers a fluid
containing two diffusing components. One component is unstably stratified and drives
convective motion, the other component is stably stratified and attempts to anchor the
fluid against such convection. When the diffusivities are not equal, double-diffusive
instability may occur; this is a central theme of this study.

We consider, in particular, the case in which the unstably stratified component
diffuses quicker than the stably stratified component (normally referred to as ‘heat’
and ‘salt’ respectively, even if the constituents are different). In this circumstance,
overstable oscillations set in at the onset of instability. This is customarily called the
‘diffusive’ problem, as opposed to that of the ‘salt fingers’. The novelty of the problem
we consider is its geometry: two-dimensional, thermohaline convection in a tall, thin
slot (figure 1).

The key feature of the slot containing the fluid is that it is thin, but not so
thin that the Hele-Shaw limit is approached. That is, it is midway between the
usual thermohaline configuration (Veronis 1968) and what is often referred to as
Lapwood convection (Lapwood 1948). The purely thermal (singly diffusing) problem
was considered earlier by Normand (1984) and Linz (1990), and is related to studies
on tilted slots by Cessi & Young (1992). These authors were concerned with physical
situations such as convection in rock fractures. Such geological applications are also
relevant here: crystalization in a cooling magma can lead to double-diffusive effects
(Chen & Turner 1980), and a vertical rock fracture containing the magma provides a
natural setting of the geometry.

Other applications include industrial processes and lab experiments, where the ge-
ometry is intentionally designed (Turner 1985). Along more exotic lines, the role of
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Figure 1. The geometry of the doubly-diffusive system, and three possible patterns of oscillatory
convection in a tall, thin slot. The background profile is one of no velocity while temperature and salt
have constant, negative vertical gradients (and no horizontal variation). In the first sketch we omit
the upper and lower boundary conditions to make the point that the mathematical development
of the problem will initially ignore these boundaries; their consideration comes later, once we have
amplitude equations in terms of a long vertical coordinate. The solid lines in the three right figures
indicate stream function while dashed lines are isotherms with the background gradient subtracted.
The diagrams are schematic of the geometry we are considering, though for the problem we discuss,
the ratio of vertical to horizontal extent is actually much greater.

buoyancy can in some situations be played by magnetic pressure and momentum. Fur-
thermore, convection can be confined to tall thin cells by external forces such as mag-
netic fields and rotation; these suggest applications in astrophysics and plasma physics.

This particular study was originally motivated by a specific fluid experiment (Biello
1996) in which the apparatus took the form of a tall, thin slot. In turn, that experiment
was motivated by the question of the robustness of layers in doubly diffusive convec-
tion. Experiments by Huppert & Linden (1979) show the formation of layers when
water containing a stably stratified salt gradient is impulsively heated from below.
Such experiments are often cited as evidence for the existence of layers in physical
situations in which double-diffusive instability appears (for an astrophysical example,
see Spruit 1992). However, these doubly diffusive systems may be better interpreted
as instances in which an established thermal gradient is slowly increased beyond the
critical threshold of instability. We then expect that oscillatory convection would set
in as discussed by Veronis (1968), but whether this system would form layers has not
yet been investigated. The fact is that only recently have numerical simulations been
able to probe the parameter regimes of interest while experiments on such an ideal
situation are quite difficult to set up.

Biello (1996) discusses an attempt at such an experiment. The apparatus took the
form of a tall, thin slot filled with water with a vertical salt gradient. The idea was to
suppress buoyant motions induced by horizontal temperature differences by having
a narrow slot, but allow for the onset of convection driven by vertical temperature
gradients. Unfortunately, the experiment was dominated by layers forming from
horizontal intrusions due to residual horizontal gradients across both the slot and in a
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third dimension (Chen, Briggs & Whirtz 1971). The removal of these unwanted effects
requires a much more careful experimental setup. Partly with an eye to conducting
such improved experiments, we give here a theoretical background to the problem.

Our theoretical study consists of a linear stability analysis of double-diffusive
instability in the tall, thin slot. In a sense, this is simply the usual thermohaline
convection problem, but with the bounding plates rotated through 90◦ (see figure 1).
Moreover, since any linear stability analysis is a woefully incomplete description of
the dynamics of instability, we go further and derive a weakly nonlinear theory valid
just beyond the threshold of instability. In fact, it is this study of the nonlinear
dynamics that is the main motivation behind this article.

We show that instability typically occurs first at small vertical wavenumbers. This
guides us to construct a long-wave theory for the nonlinear development of the
instability. The resulting amplitude equations, what we call either the ‘ABC system’
or the ‘A system’, are different from those normally derived in convection theory
(Chapman & Proctor 1980; Bretherton & Spiegel 1983). This does not mean that
they are highly specific to thermohaline convection in a slot. In fact, the equations
have much wider application. Most closely related are problems such as doubly
diffusive convection in a porous slot (Murray & Chen 1989), which naturally possess
similar dynamics. However, in general, the amplitude equations are applicable to any
system for which instability sets in through long waves, but with finite frequency.
The non-zero frequency sets the weakly nonlinear theory apart from previous long-
wave calculations of thermohaline or binary fluid convection, which have frequency
vanishing with wavenumber (Childress & Spiegel 1981; Pismen 1987). However, we
note that there are various mathematical similarities of our study with the work of
Proctor & Holyer (1986) who were interested in the stability of salt fingers.

Because the laboratory experiment that originally motivated this study proved to be
something of a red herring, we emphasize that this is primarily a mathematical study
of the weakly nonlinear dynamics of a class of problems in which instability sets in
through long waves with finite frequency. The amplitude equations are not specific to
thermohaline or even fluid systems, and have not previously been derived (probably
because the more commonly encountered long-wave instabilities have zero frequency,
or the onset of instability is at finite wavenumber). However, these equations, as
we shall see, model a rich array of dynamical behaviour. As such, they provide an
interesting alternative to many of the models currently used in the theory of nonlinear
dynamics (notably the complex Ginzburg-Landau equation).

2. Formulation
Consider a fluid confined to a tall, thin slot and with constant gradients of

temperature and salinity in the vertical direction (see figure 1). With the Boussinesq
approximation to the Navier–Stokes equations, two-dimensional perturbations to the
motionless, conducting state satisfy the dimensionless equations[

1

σ
∂t − ∇2

]
∇2ψ + RTθx − RSΣx =

1

σ
J
(
ψ,∇2ψ

)
, (2.1)

[
∂t − ∇2

]
θ + ψx = J (ψ, θ) , (2.2)[

∂t − τ∇2
]
Σ + ψx = J (ψ, Σ) , (2.3)
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where ψ is the streamfunction, θ and Σ are the perturbations of temperature and
salt from the background, RT and RS are the thermal and solutal Rayleigh numbers,
respectively, σ is the Prandtl number and τ−1 is the Lewis number.

The equations (2.1)–(2.3) come with various boundary conditions, depending on
the precise physical problem of interest. On the front and back walls, x = 0 and 1, no
slip on the velocity field implies ψ = ψx = 0, whereas stress free gives ψ = ψxx = 0.
If the diffusing components are fixed in value, then Σ = θ = 0 on x = 0 and 1.
Alternatively, if the bounding walls are impervious to diffusion, then θx = Σx =
0 (fixed fluxes). When the walls are not perfectly impermeable to heat and salt,
intermediate, ‘leaky conditions’ are θx ∓ λTθ = Σx ∓ λSΣ = 0 on x = 0 or 1. We
consider various combinations of these boundary conditions in the linear stability
analysis. For nonlinear theory, the important condition of the boundaries is whether
they are fixed heat and salt or fixed flux (we consider the latter case in most detail).
The ‘leaky’ case allows us to bridge the gap between the two cases.

Finally, since the geometry under consideration is a tall thin slot, we expect that the
top and bottom boundaries should have little effect on the linear stability calculation
and so we postpone their consideration until later. However, since the slot is a tall
one, we envision that convective rolls can be set up on scales of the order of the
thickness of the slot, and so we assume, for now, that all fields are proportional to eikz

in the linear stability analysis (though it will turn out that k = 0 is most important).

3. Linear stability analysis
The linear problem can be written formally as

LkΨ ≡
[ (
σ−1∂t + k2 − ∂2

x

) (
∂2
x − k2

)
RT∂

2
x −RS∂2

x

1 ∂t + k2 − ∂2
x 0

1 0 ∂t + τk2 − τ∂2
xx

](
ψx
θ
Σ

)
= 0.

(3.1)
In the thermohaline problem there are two types of instabilities. Steady convection

sets in through a direct instability, whereas oscillatory convection appears at a Hopf
bifurcation. For τ� 1, steady convection typically sets in for RT � RS , which signifies
that the background state has density increasing with height. Oscillatory convection,
on the other hand appears for RT ∼ RS , when the density may still decrease with
height. Hence, as we raise the temperature gradient (RT ), the onset of convection is
usually in the form of oscillations, and this is where we direct our attention in this
article.

In what follows, we fix the parameters τ and σ (for purposes of illustration we
take τ = 0.1 and σ = 7). The two free parameters are then the two Rayleigh
numbers, RS and RT . On fixing one of these numbers, RS say, we may look for
states on the threshold of linear instability by varying the other, RT ; this leads to
stability boundaries, RT = RT,s(k

2, RS ) for steady convection and RT = RT,h(k
2, RS )

for overstability. Once these boundaries are determined, we may isolate the points at
which instability first sets in as a function of wavenumber, k; these are the marginal
stability points, RT = RT,m(RS ) and k = km(RS ).

3.1. The analytical problem

The stability problem can be solved in closed form in the case in which the boundaries
are stress free and the fluxes are fixed. The eigenfunctions then have the dependence
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eλt cos nπx, and the governing equations become(
σ−1λ+ p2

)
p2ψx − n2π2 (RSΣ + RTθ) = 0, (3.2)(
λ+ p2

)
θ + ψx = 0, (3.3)(

λ+ τp2
)
Σ + ψx = 0, (3.4)

where p2 = π2n2 + k2. Thus the dispersion relation is given by

λ3 + λ2p2(τ+ σ + 1) + λ

[
p4(σ + στ+ τ) +

n2π2

p2
σ (RS − RT )

]
+στp6 + n2π2σ (RS − τRT ) = 0. (3.5)

A bifurcation to steady convection occurs when λ = 0 and (see Veronis 1968)

RT = RT,s ≡
RS

τ
+

p6

n2π2
.

Overstable oscillations arise through a Hopf bifurcation, for which λ is purely imagi-
nary. We set λ = iω in (3.5) and obtain RT = RT,h with

RT,h ≡
σ + τ

σ + 1
RS + (σ + τ+ στ+ τ2)

p6

n2π2σ
and ω2 =

σ (1− τ)
σ + 1

n2π2RS

p2
− τ2p4.

(3.6)
For fixed RS and small τ the Hopf curve occurs at lower values of RT than the
stationary branch. Moreover, the marginal state is given by n = 1 and k = 0, with
RT = RT,m and ω = ωm, where

RT,m ≡
σ + τ

σ + 1
RS + (σ + τ+ στ+ τ2)

π4

σ
and ω2

m ≡
1− τ
σ + 1

σRS − π4τ2. (3.7)

That is, long waves with finite frequency.
The physical interpretation of this instability is as follows. From the linear eigen-

function we observe that the velocity field is given by

u = −ikψ = − ik

nπ
eλt+ikz sin nπx and w = ψx = eλt+ikz cos nπx. (3.8)

Hence, when k → 0, motion is primarily vertical. Moreover, the velocity field of
the marginally stable mode (n = 1) takes the form of two counterflowing streams.
In other words, on introduction of a buoyancy perturbation through thermal and
salinity anomalies, the fluid forms a pair of adjacent columns, one ascending, one
descending. The columns traverse a finite distance before thermal diffusion obliterates
the temperature anomalies in the columns, which then sink or rise due to their
anomalous salt content. Subsequently, the descending and ascending columns again
exchange heat, regain buoyancy, and the cycle repeats. Hence the fluid forms two
adjacent columns that rock up and down and out of phase.

3.2. Numerical results

For the other types of boundary conditions, the stability results are not so simply given.
Instead, we employ a Newton–Raphson–Kantorovich algorithm (Cash & Singhal
1982) to solve the problem numerically. The results are shown in figures 2–4. These
figures show, respectively, the cases (a) fixed fluxes and no slip, (b) fixed salt and heat
with no slip and (c) fixed salt and heat with stress free. In all the cases, the onset of
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Figure 2. Critical Rayleigh number, scaled to that of the analytic case, RT (σ + 1)/[RS (σ + τ)]− 1,
versus vertical wavenumber. Boundary conditions correspond to fixed flux of salt and temperature
and no-slip on the velocity field (case a). The curves are labelled by RS . The minimum of the
10× 104 and 13× 104 curves do not occur at k = 0. Asterisks indicate the parameters used for the
eigenfunctions of figures 6 and 7.
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Figure 3. RT (σ + 1)/[RS (σ + τ)] − 1 against vertical wavenumber for boundary conditions corre-
sponding to fixed salt and heat with no-slip on the velocity field (case b). The curves are labelled
by RS .

steady convection occurs for higher thermal Rayleigh numbers than the inception of
oscillations; the stability boundaries of the oscillatory modes are pictured. Moreover,
we have normalized to the thermal Rayleigh number for instability in the case of
stress free and fixed flux of solute and temperature.
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In figure 5 we also show the corresponding frequencies at which the oscillatory
bifurcations occur in case (a). The main point to note from this figure is that as k → 0,
the frequency again remains finite, a feature which proves vital in the nonlinear theory.
Lastly, figures 6–8 show a selection of marginal eigenfunctions.

Although the modal dispersion relation cannot be constructed in closed form if
the boundary conditions are other than fixed flux and stress free, when RS is large
and k → 0 we can simplify the linear problem by asymptotic means. In this limit, the

analytical solution suggests the scalings, RT ∼ RS , ω2 ∼ RS , ψ ∼ R
1/2
S θ and Σ ∼ θ.

Hence, to the leading two orders in R−1
S , equations (2.1)–(2.3) become

iωσ−1ψxx + RTθx − RSΣx ≈ ψxxxx, (3.9)

iωθ + ψx ≈ θxx, (3.10)

iωΣ + ψx ≈ τΣxx, (3.11)

where the right-hand sides are small. A regular expansion then gives the asymptotes
of the stability boundaries,

RT,h ≈
σ + τ

1 + σ
RS and ω2 ≈ σ (1− τ)

σ + 1
RS . (3.12)

To extract the dominant variation of the stability boundaries with RS , we show
the departure of RT and ω from these asymptotic values in the figures; that is,
(1 + σ)RT,h/[(σ + τ)RS ]− 1 and (1 + τ)ω2/[(1− τ)σRS ]− 1.

This asymptotic calculation proceeds in a regular fashion if the leading-order
eigenfunctions, ψ ∼ iωθ ∼ iωΣ, satisfy the boundary conditions. This is the case
for the combinations stress free and fixed flux and no slip and fixed values. If
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Figure 7. Real and imaginary parts of the stream function, temperature and salt fields, respectively,
versus x for RS = 105 at k = kmin 6= 0. The recirculation cells at the boundaries are necessary
in order to fit the boundary conditions (fixed flux and no-slip; case a) and this effect causes the
instability to set in at k 6= 0 for large RS .

the boundary conditions are anything other than these two combinations, then the
leading-order solution fails, suggesting the presence of boundary layers near the walls.
Indeed, the eigenfunctions shown in figures 7 and 8 exhibit such features.

Over significant ranges of salt Rayleigh number, for all four sets of boundary
conditions, the points of marginal stability occur at k = 0. However, an interesting
feature of the problem with no-slip boundaries is that when RS is sufficiently large,
the marginal wavenumber is not zero (cases a and b; figures 2 and 3). This feature
appears to be connected to the development of recirculation cells near the walls that
preserve the no-slip condition (figure 7). As RS increases, these recirculations must be
responsible for long waves becoming less preferable than finite-wavenumber rolls.

The stability boundaries for the third case (fixed value and stress free), show more
unusual features. As RS increases, the stability boundary pinches off and an isola is
created near k = 0 (figure 4). Importantly, for the isola, k = 0 remains the marginal
value. The formation of this isola is symptomatic of thermal and saline boundary
layers developing in the eigenfunctions (see figure 8). Stability boundaries with similar
features have previously been found for triply diffusive fluids (Pearlstein 1981).

In principle, we could study the linear problem in further detail in order to
understand more of the physics underlying the unusual features of the stability
boundaries. However, we now leave linear stability and discuss weakly nonlinear
theory. More specifically, we look for long-wave, finite-amplitude solutions. Hence a
remark about cases when k = 0 is not marginal is in order. In the circumstance that
finite-wavenumber rolls are preferred at onset, the development of mildly unstable rolls
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is described by a complex Ginzburg-Landau equation (see Bretherton & Spiegel 1983).
The dynamics of extended systems described by such equations has been extensively
explored in the past (e.g. Chaté 1994) and for this reason we ignore the possibility of
such finite-wavenumber instability in the weakly nonlinear development. The results
described above indicate the physical regimes in which the long-wave expansion is
justified.

4. Weakly nonlinear expansion
The linear stability analysis of the previous section indicates that over significant

regions of parameter space, convection in the slot develops at zero vertical wavenum-
ber. We now go further and derive associated long-wave equations. We take a small
parameter, ε, as the measure of the supercriticality of the instability. Hence we fix RS
and set RT = R0 +ε2R2 where R0 = RT,m is the marginal Rayleigh number. To capture
slowly developing long waves, we introduce the second, slow timescale, T = ε2t, and
the long length scale, Z = εz. With these scalings, the equations become

1

σ
ψxxt − ψxxxx + R0θx − RSΣx = ε

1

σ
J (ψ, ψxx)− ε2

(
ψxxT + ψZZt

σ
− 2ψxxZZ + R2θx

)
,

(4.1)

(∂t − ∂2
x)θ + ψx = εJ (ψ, θ) + ε2(∂2

Z − ∂T )θ, (4.2)

(∂t − τ∂2
x)Σ + ψx = εJ (ψ, Σ) + ε2(τ∂2

Z − ∂T )Σ, (4.3)

to O(ε4), where the Jacobian is now defined with Z .
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4.1. The analytical case

We first consider the analytical case; that is, stress-free, fixed-flux boundary conditions.
We pose the asymptotic series

ψ = εψ1 + ε2ψ2 + ..., θ = εθ1 + ε2θ2 + ..., Σ = εΣ1 + ε2Σ2 + ..., (4.4)

introduce these relations into the equations, and organize the various terms into an
asymptotic hierarchy which we solve order by order. At leading order we find

σ−1ψ1xx − ψ1xxxx + R0θ1x − RSΣ1x = 0, (4.5)

(∂t − ∂2
x)θ1 + ψ1x = 0 and (∂t − τ∂2

x)Σ1 + ψ1x = 0. (4.6)

These relations are just the linear equations for the marginal mode; a solution is(
1

−1/(π2 + iω)
−1/(τπ2 + iω)

)[
A(Z,T )eiωt + c.c.

]
cos πx, (4.7)

where ω = ωm is given in equation (3.7). However, this is not the only solution. The
two solutions, θ1 = B(Z,T ) with ψ1 = Σ1 = 0, and Σ1 = C(Z,T ) with ψ1 = θ1 = 0,
are also possible. These are simply the perturbations to the mean heat and salt fields.
In fact, to obtain the correct nonlinear amplitude equations it is vital to introduce all
three solutions at leading order. Hence we take(

ψ1x

θ1

Σ1

)
=

(
1

−1/(π2 + iω)
−1/(τπ2 + iω)

)[
Aeiωt + c.c.

]
cos πx+

(
0
1
0

)
B +

(
0
0
1

)
C, (4.8)

where A, B and C are unknown amplitudes depending on Z and T and which become
known through the desired long-wave equations. Note that A is complex, but B and
C are real.

At O(ε2) we again find linear equations. These need not be considered and we move
onto order ε3. At this order, the equations are

1

σ
ψ3xxt−ψ3xxxx+R0θ3x−RSΣ3x =

[
π2

σ
AT −

(
2π2 +

iω

σ

)
AZZ −

π2R2

π2 + iω
A

]
eiωt cos πx,

(4.9)

θ3t − θ3xx + ψ3x =

(
AT − AZZ
π2 + iω

+ ABZ

)
eiωt cos πx− BT + BZZ −

π2

π4 + ω2
|A|2Z + o.t.,

(4.10)

Σ3t−τΣ3xx+ψ3x =

(
AT − τAZZ
τπ2 + iω

+ ACZ

)
eiωt cos πx−CT+τCZZ−

τπ2

τ2π4 + ω2
|A|2Z+o.t.,

(4.11)
where o.t. signifies other, uninteresting terms. To solve these equations, we must
enforce solvability conditions corresponding to the three linear, marginal solutions.
These solvability conditions may be written in the form

AT = γA+ ηAZZ − δABZ + βACZ, (4.12)

BT = BZZ − ξ |A|2Z , (4.13)

CT = τ(CZZ − α |A|2Z ), (4.14)

where

η = I−1[2 + iω/(π2σ) + R0/(iω + π2)2 − τRS/(iω + τπ2)2], (4.15)
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β = I−1RS/(iω + τπ2), δ = I−1R0/(iω + π2), γ = I−1R2/(iω + π2), (4.16)

α = π2/(ω2 + τ2π4) and ξ = π2/(ω2 + π4), (4.17)

with

I ≡ 1/σ + R0/(iω + π2)2 − RS/(iω + τπ2)2. (4.18)

We will consider this system in more detail in later sections. Note that γ ∝ R2

measures the proximity of the stability boundary. That is, it is an instability, or
control, parameter.

4.1.1. Leaky walls

The case of fixed fluxes is very special in that we may add any constant to the
temperature and salt fields. This symmetry is the origin of the eigenmodes B and C
that we have included in the nonlinear theory. However, it is both interesting and
useful to break this symmetry in order to be able to connect the finite-amplitude
theory to that which emerges when there are no such symmetries (see §4.2). In order
to break the symmetry, whilst keeping the problem analytically tractable, we may add
symmetry breaking terms as a perturbation. That is, we consider poorly conducting
sidewalls that permit a small flux of salt. This is embodied in the modified boundary
conditions on the sidewalls,

θx − ε2λTθ = Σx − ε2λSΣ = 0 on x = 0, (4.19)

θx + ε2λTθ = Σx + ε2λSΣ = 0 on x = 1, (4.20)

where λT and λS are parameters.
With the new boundary conditions, the problem is not altered at leading order.

Only the order-ε3 problem is affected, and when we apply the solvability condition,
we obtain the modified amplitude equations

AT = γ̂A+ ηAZZ − δABZ + βACZ, (4.21)

BT = −2λTB + BZZ − ξ |A|2Z , (4.22)

CT = τ
[
−2λSC + CZZ − α |A|2Z

]
, (4.23)

where the only coefficient as yet undefined is γ̂, but this acts as our control parameter
and so we omit the precise form to be concise (and drop the hat).

Equations (4.21)–(4.23) are the most general form of what we will refer to as the
‘ABC system’.

4.2. General cases

The purpose of this subsection is to sketch out the various possibilities for the long-
wave amplitude equations in the case of general boundary conditions. We include this
discussion for the sake of completeness, though we will discuss only the ABC system
in later sections (the reader not interested in this catalogue might wish to skip to §5).
The main reason for this is that the ABC system in its most general form contains
all the other long-wave equations as special cases.

We write the problem formally as LΨ = N (Ψ), in terms of a linear operator, L, and
the nonlinearities, N. This equation can be solved asymptotically by posing expansions
such as Ψ = εΨ1 + ε2Ψ2 + · · ·, and introducing suitable analogous sequences for the
two operators. In order to solve the resulting hierarchy of equations we must again
impose certain solvability conditions that generate the desired long-wave equations.
This scheme depends critically on the solution of the leading-order, linear problem;
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that is, on the form of the marginal modes. In the fixed-flux case that we developed
analytically, there are three modes, with amplitudes A, B and C , that need to be added
to the expansion. As we have already indicated, the latter two arise from an additional
symmetry in the fixed-flux problem. But when there is no such symmetry, there is
no corresponding neutral mode in the leading-order solution (unless we break the
symmetry perturbatively). Hence we must consider the cases with different boundary
conditions separately.

4.2.1. Fixed fluxes

For boundaries with fixed flux, the neutral modes B and C are present whatever
the mechanical conditions. We therefore again find an ABC system, with the general
form of the coefficients given by

η =
1

I

(
2ψ2

1x + R0θ
2
1 − τRSΣ2

1 +
iω

σ
ψ2

1

)
, β =

RS

I

(
τΣ2

1x + iωΣ2
1

)
, (4.24)

δ =
R0

I

(
θ2

1x + iωθ2
1

)
, γ =

R2

I

(
θ2

1x + iωθ2
1

)
, (4.25)

I =
1

σ
ψ2

1x + R0θ
2
1 − RSΣ2

1 , α = 2|Σ1x|2, ξ = 2|θ1x|2, (4.26)

where overbars denote integration across the slot.

4.2.2. Fixed temperature and salt

If the salt and temperature fields are fixed on the sidewalls then the B- and C-modes
do not enter the linear problem. In this circumstance, we pose a solution of the form
Ψ = Ψ0 + εΨ1 + · · ·. The leading-order problem then has a solution

Ψ0 = A (Z,T )Ψaeiωt + c.c., (4.27)

with the eigenfunction Ψa defined from the linear theory. We then proceed to higher
orders in the usual fashion; eventually we find the amplitude equation

AT = γA+ ηAZZ + Γ1A |AZ |2 + Γ2 |A|2 AZZ + Γ3A
∗A2

Z + Γ4A
2A∗ZZ , (4.28)

where all of the coefficients are complex. This equation is a long-wave version of the
celebrated complex Ginzburg–Landau equation; we refer to it as the ‘A system’. Some
features of the system are described in the Appendix. A similar equation to (4.28)
was derived by Normand (1984) in a different problem.

4.2.3. Mixed cases

The form of the amplitude equations reveals that the fixed-flux and fixed-value
problems are fundamentally different. We will concentrate on the former in the
coming sections, but before we go into this, we mention the cases in which fixed flux
conditions are applied on one field, but fixed values on at least one boundary for the
other field. This eliminates one of the linear modes, B or C . If we fix the flux on
the temperature field, but set the salinity on the walls, for illustration, then the linear
problem is missing the C-mode. The expansion follows that of fixed fluxes and at
second order we arrive at the amplitude equations

AT = γA+ ηAZZ − δABZ (4.29)

and

BT = BZZ − ξ |A|2Z . (4.30)
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In other words, we obtain the amplitude equations of the fixed-flux problem without
the C-mode. In a similar way, if we were to consider fixed salt fluxes, but fixed
temperature, then the amplitude equations would again be the fixed-fluxes set, but
without the B-mode. Hence the mixed boundary condition problem is a special case
of the ABC system.

Equations (4.29) and (4.30) are identical to those derived by Cessi & Young (1992)
for thermal convection in a tilted slot. A crucial difference, however, which makes
the current system much more interesting, is that the coefficients are complex. With
hindsight gained from the complex Ginzburg–Landau problem, we expect that this
leads to a much richer range of dynamical behavior.

5. Limits of the amplitude equations
We now concentrate on the ABC system of equations. In its most general form,

the system is

AT = γA+ ηAZZ − δABZ + βACZ, (5.1)

BT = −2λTB + BZZ − ξ |A|2Z , (5.2)

CT = τ
[
−2λSC + CZZ − α |A|2Z

]
. (5.3)

This system contains a large number of other, more well-known equations as special
cases, and we devote this section to describing some of these limits.

5.1. Slaving B and C

In the limit that the parameters λS , λT , η, β, δ and γ are all small in magnitude, the
system reduces to the complex Ginzburg-Landau equation. To see this, we rescale
both these parameters and time by a small parameter, ε. This recasts the A-equation
in its original form, but the B- and C-equations become modified to

ε(BT + 2λTB) = BZZ − ξ |A|2Z and ε(CT + 2λSC) = τ
(
CZZ − α |A|2Z

)
. (5.4)

Hence to leading order in ε, we slave the B and C variables:

BZZ = ξ |A|2Z and CZZ = α |A|2Z . (5.5)

(We proceed informally here and we do not rigorously establish the adiabatic elimi-
nation of variables.) If we integrate these equations, assume the integration constants
vanish, then eliminate the slaved variables, we arrive at

AT = γA+ ηAZZ − (δξ − αβ)|A|2A; (5.6)

the Ginzburg–Landau equation. (If the integration constants do not vanish, it merely
necessitates a modification of the control parameter, γ, to cast the resulting equation
in this form.)

A different way of slaving B and C is to assume that the walls are relatively
imperfect in imposing the no-flux condition. Then we may take λT � 1 and λS � 1.
The slaving equations are then

2λTB = −ξ |A|2Z and 2λSC = −α |A|2Z , (5.7)

from which it follows that

AT = γA+ ηAZZ +

(
ξδ

2λT
− αβ

2λS

)
A|A|2ZZ . (5.8)
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This is a version of the A-system (the equation derived in §4.2.2 for the fixed-values
problem).

5.2. The zero-frequency limit

Another limit of the amplitude system is when the oscillation frequency becomes very
small. In the analytical problem, it is clear that this will happen if either the Prandtl
number becomes small, σ � 1, or if τ→ 1. If we set λS = λT = 0 and consider τ→ 1,
we obtain

1

σ
AT =

R2

π2
A+ 2AZZ −

RT

π2
ABZ +

RS

τπ2
ACZ, (5.9)

BT = BZZ −
1

π2
|A|2Z and CT = τCZZ −

1

τπ2
|A|2Z . (5.10)

In this limit, the coefficients all become real. Were we to now slave B and C as above,
we would obtain the real Ginzburg–Landau equation. That equation has a Lyapunov
functional and predicts evolution to the gravest mode in the system. Both this fact and
the results of Cessi & Young (1992) suggest that the dynamics of the real equations
(5.9)–(5.10) may be rather simple, although we cannot in general find a Lyapunov
functional (though the behaviour after sufficiently long times may be relatively simple,
complicated transient states may, however, appear and small perturbations can lead
to richer dynamics; Balmforth 1995).

A real system like (5.9)–(5.10) was previously derived by Poyet (1981) for fixed-flux
Rayleigh–Bénard convection between a pair of poorly conducting plates.

5.3. The large Rayleigh number limit

A different limit is obtained if we take the salt Rayleigh number to be large. Then
both RT and ω also become large. Once again this limit corresponds to a particular
choice of the parameters of the equations. In fact,

2iω

σ
AT = R2A−

ω2

σπ2
AZZ − RTABZ + RSACZ, (5.11)

BT = BZZ −
π2

ω2
|A|2Z and CT = τCZZ −

π2τ

ω2
|A|2Z . (5.12)

Thus the system reduces to a Schrödinger-like equation, nonlinearly coupled to two
diffusion equations.

This limit is analogous to one considered by Bretherton & Spiegel (1983) in the
standard thermohaline problem. In that problem, one obtains the cubic Schrödinger
equation at leading order. Here, the diffusive nature of the B and C modes remains
and we do not obtain an integrable system unless we additionally slave B and C .

6. The ABC system
We now concentrate on the ABC system. First we put it into a ‘standard form’.

Since only vertical derivatives of B and C contribute to the evolution of A, it is
convenient to formulate the gradient forms of (4.13) and (4.14). Then, the number of
coefficients can be decreased by rescaling the amplitudes and introducing a temporally
periodic factor into A. For simplicity, we also take λT = λS = 0 henceforth. We use
the definitions

A = (ξ |δ|)1/2Ae−iγiT , B = |δ|BZ, C = |β|CZ (6.1)
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Case η ν µ α

(i) Stress-free 0.88400 + 2.4644i 0.68116− 0.73213i 0.77685− 0.62968i 1.140475
(ii) No-slip 15 + 4i 0.06 + i i 0.95

Table 1. Values of the coefficients of the ABC system. τ = 0.1. Case (i) corresponds to RS = 4000.

and

γ̃ = γr, α̃ =
α |β|
ξ |δ| , µ =

β

|β| , ν =
δ

|δ| . (6.2)

We further rescale the interval in Z to [0, 1]. After dropping tildes on all quantities,
the amplitude equations are written as

AT = γA+ ηAZZ − (νB− µC)A, (6.3)

BT =
[
B− |A|2

]
ZZ

and CT = τ
[
C− α |A|2

]
ZZ

(6.4)

so that γ is real, and µ and ν have unit magnitude.
In subsequent sections we will solve the system of equations in some detail. We will

do this for certain parameter values. The most natural choice is suggested by using
the analytical formulae for the stress-free and fixed-flux problem; appropriate values
for RS = 4000 are listed in table 1 as case (i). We also consider an alternative set of
parameters, which approximate the coefficients of the fixed-flux and no-slip problem.
These are listed as case (ii) in table 1. Note that we leave the choice of γ (equivalently,
R2) open; this parameter acts as our control.

7. Equilibria and stability
In this section we shall consider equilibrium solutions of the ABC system and

determine their stability. At this stage, however, we must specify the boundary
conditions in Z; we consider two cases.

7.1. Periodic domains

We seek periodic solutions of (6.3)–(6.4) of the form

A = Rei(KZ+ΩT ), B = B0, C = C0 (7.1)

where R, B0 and C0 are constants. At this stage, any constants, B0 and C0, will
suffice as solutions. Given these constants, the amplitude equations become linear
in R. Hence, arbitrary B0 and C0 generate classes of solutions with undetermined
amplitudes, R. In fact, these solutions are simply linear neutral modes, which are
also nonlinear solutions of the periodic problem. Worse still, linear modes with Ω
complex are also nonlinear solutions; neutral, exponentially growing or decaying
alike. This signifies that the system is either stable, and everything decays to the
trivial background state, or that the system is unstable and disturbances grow without
saturation. This state of affairs is completely unsatisfactory and indicates that the
ABC system is of questionable physical significance when solved on periodic domains.

However, there are certain solutions that correspond to the finite-amplitude solu-
tions of the complex Ginzburg–Landau equation and it is interesting to study them
for purposes of comparison and because they convey a certain amount of insight into
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the general problem. This subset of solutions is obtained on taking

B0 = R2, C0 = αR2,

γ = ηrK
2 + ΛrR

2, Ω = −ηiK2 − ΛiR2,

}
(7.2)

where

Λ ≡ ν − µα. (7.3)

This is a family of exact solutions to the amplitude equations with R (K) and Ω (K)
given implicitly by equation (7.2). Solutions therefore bifurcate supercritically or
subcritically depending on the sign of the parameter Λr .

Note that in the analytical problem Λr = 0, implying that the periodic solutions
must bifurcate vertically at the point of instability. This results from a special
symmetry of this specific problem when the boundaries are stress free (Bretherton
& Spiegel 1983). It indicates that one might need to proceed in the expansion,
retaining higher-order terms, to find the correct nonlinear saturation term. The
cubic coefficient, however, is not purely imaginary for the other possible boundary
conditions. Moreover, in bounded domains, the solutions branches do not bifurcate
vertically for the analytical problem. Hence cases with Λr = 0 do not present a failing
of the theory.

In the cases we have considered, νr and αµr are both positive. Hence the B-mode is
nonlinearly stabilizing, whereas C is destabilizing. This reflects the usual roles played
by the heat and salt perturbations; the modification to the background temperature
gradient by the convective heat flux stabilizes the system, but the erosion of the
stabilizing salt gradient by the convective salt flux promotes further instability.

We now consider perturbations about the solution (7.2):

A = [R + r (Z,T )] ei(KZ+ΩT+φ(Z,T )), B = B0 + b (Z,T ) , C = C0 + c (Z,T ) , (7.4)

with (r, φ, b, c) ∝ eK
2λT+iKqZ , where λ and q are a suitably scaled growth rate and

wavenumber, respectively. The resulting eigenvalue equation is∣∣∣∣∣∣∣
 λ+ ηrq

2 + 2iηiq −ηiq2 + 2iηrq νrP −µrP
ηiq

2 − 2iηrq λ+ ηrq
2 + 2iηiq νiP −µiP

−2Pq2 0 λ+ q2 0
−2ταPq2 0 0 λ+ τq2


∣∣∣∣∣∣∣ = 0, (7.5)

where P = R/K .
If P � 1, then the dispersion relation always has a single root that for sufficiently

small q is positive: λ ∼ 2ηrq. Hence, near onset, the rolls are always unstable.
Depending on parameter values, rolls can either remain unstable for all P , or becomes
stable once P reaches some critical threshold, P = Pcrit. We may rewrite this condition
as

γ > (ηr + ΛrP
2
crit)K

2, (7.6)

which can be compared with the condition for the existence of the equilibrium
solutions: γ > ηrK

2. These two conditions define parabolas on the (K, γ)-plane, and
the situation is much the same as in Eckhaus instability theory: provided ΛrP

2
crit > 0,

rolls sandwiched between the two parabolas are unstable. One point of difference,
however, is that the instability invariably is oscillatory (cf. Janiaud et al. 1992).

7.2. Finite domains

Periodic solutions have the unappealing feature of permitting uncontrolled linear
instability at worst, and being contrived at best. In this subsection we remedy
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Figure 9. Equilibrium solutions for A for increasing γ. Parameter values as in table 1, case (ii).
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is the average of |A|2 over the slot.

the situation by considering the more realistic case in which we impose boundary
conditions at the bottom and top of the slot. More specifically, we consider the
conditions A(0) = B(0) = C(0) = A(1) = B(1) = C(1) = 0.† The equation to be

† This choice corresponds to no motion and fixed fluxes at the upper and lower boundaries. We
could alternatively apply fixed heat or salt or both, but the results are unlikely to be very different.
Perhaps more seriously, the conditions are always stree-free. The asymptotic analysis does not allow
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solved is

iΩA = γA+ ηAZZ − (ν − αµ)|A|2A, (7.7)

where we allow for a continual rotation of the phase of A (Ω 6= 0). Except in certain
special cases, the solutions cannot be given in closed form and we resort to numerical
evaluation. From a formal point of view, the equilibrium problem is identical to that
for the complex Ginzburg–Landau equation (cf. van Saarloos & Hohenberg 1994)
though the secondary instability problem is not.

To construct the equilibria we introduce a Fourier sine series for the amplitudes
A, BZ and CZ . The solution then follows from Newton iteration, with the frequency
Ω determined as an eigenvalue. This scheme also has the advantage of reducing the
problem of the secondary instability of these equilibria to a simple matrix eigenvalue
problem.

In the finite domain, finite-amplitude solutions bifurcate from the trivial background
state once γ exceeds a threshold. These points of bifurcation are given by γ = γn =
n2π2ηr . At these parameter values, finite-amplitude solutions appear corresponding
to the linear modes, sin nπZ , of the background state. For the parameter ranges
we have examined, the n = 1 solution bifurcates supercritically, and so one of the
finite-amplitude states is, at least initially, stable.

Figure 9 shows the n = 1 solution at various values of the control parameter, γ,
beyond threshold for parameter values of the no-slip problem (case (ii) in table 1). A
bifurcation diagram showing amplitude (that is, the average of |A|2 over the domain)
and frequency, Ω, against γ is shown in figure 10. The locus of the n = 1 solutions is
not very remarkable. However, as indicated in the figure, the solution loses stability
in a secondary bifurcation near γ = 1430.

More solutions are shown in figure 11, which shows equilibria corresponding
to n = 1–4 at γ = 1000. The higher-order solutions (n > 1) are all unstable to
perturbations with lower wavenumber. (However, this is not always the case for
general parameter values.)

Figures 12 and 13 show solutions for the stress-free problem with various values
of RS . As we increase RS , the solution branches bifurcate more and more sharply;
at larger values of RS , this behaviour is extreme and the bifurcation occurs almost
vertically.

The solutions branches again suffer the onset of secondary instability; this is
particularly severe at larger RS , where the windows in γ over which the branches
are stable become very small indeed (see figure 13). When we allow RS to vary as
a second parameter, we find the border of secondary instability in the (RS , γ)-plane
as shown in figure 14. The peculiar shape of the curve in the figure arises because
of competition between different modes of secondary instability. At larger RS , the
competition is typically amongst different pairs of oscillatory modes. These lead to
Hopf bifurcations, the ramifications of which we will explore in the next section. For
smaller RS , the leading secondary instabilities are direct; these instabilities correspond
to ‘mixed modes’ that generate new equilibria which connect the n = 1 solution
branch to the n > 1, higher-order equilibrium solutions.

for no-slip conditions at Z = 0 and 1. To include this additional physics we would need to place
boundary layers near the upper and lower walls, find a locally valid solution there and match
this with the solutions to the ABC system. This kind of problem is also encountered in the usual
thermohaline problem whenever realistic horizontal boundaries are included.
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8. Numerical time integrations
The equilibria described in the last section illustrate some of the possible solutions

to the ABC system. Now we go further in exploring the system and solve the
partial differential equations numerically with boundary conditions, A = B = C = 0
on Z = 0 and 1. To do this we used two different schemes (one based on a
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finite-difference algorithm, the other a finite-element collocation scheme) and verified
agreement between the two. For illustration, we take the two cases listed in table 1.
These lead to two different types of behaviour that we illustrate below.

8.1. Case (i): states of spatio-temporal complexity

For the stress-free (analytical) problem, there are stable equilibrium states for γ up to
about 12.7. At that value of the control parameter, secondary instability appears in
the form of a Hopf bifurcation. In figure 15 we show time traces of the solution at
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the centre of the slot for γ = 13.5, 15 and 20. Space–time surface plots of the solution
for B(Z,T ) are displayed in figure 16 in the three cases.

Just beyond the bifurcation, a stable temporally periodic solution appears (fig-
ure 16a), indicating the Hopf bifurcation is supercritical. For larger γ, the solutions
become irregular (figures 16b). The transition between the two types of behaviour
lies close to γ = 14.36, and appears to take the form of the familiar period-doubling
cascade. We therefore conjecture that the system becomes chaotic for γ > 14.36.

For the largest value of γ, the solution undergoes erratic large-amplitude pulses
amid a more regular, though still chaotic, phase (figure 16c). In these chaotic states,
the fields evolve by ‘sloshing’ up and down the slot; that is, convection begins at the
top of the slot (say), then propagates down to the lower end, then back up to the top
in a relatively erratic fashion.

8.2. Case (ii): bursting states

According to equilibrium stability theory, for the no-slip problem, a stable branch of
finite-amplitude solutions bifurcates from the trivial state when γ reaches ηrπ

2 ≈ 150.
This branch of solutions eventually loses stability near γ = 1430 (see figure 10). In
the range [150, 1430] we therefore anticipate that the system relaxes to an oscillatory
convective pattern like that of figure 1. This view was at least partially confirmed
by direct integrations of the ABC system; oscillatory patterns corresponding to the
equilibria of §7 were observed over this range in γ. However, the system also showed a
sensitivity to initial conditions, and the equilibrium solutions were not the only states
to which the system evolved.

For γ above 500, the system also showed evolution to a second, time-dependent
attractor. This is illustrated in figure 17, which shows time traces and phase portraits
at the slot centre. In the case shown by solid lines, the stable equilibrium solution
is the ultimate end-point of evolution, but in the case drawn as dotted lines, with
different initial conditions, the system has a different fate. The new attractor has the
form of a bursting periodic cycle.

The origin of the periodic cycle can be roughly understood as follows. For small
amplitude in A and large γ, the fields B and C remain approximately constant
(or at least slowly decay diffusively). In this situation, the A-equation is essentially
linear and we may decompose the field into Fourier components. This indicates that
the gravest component of A, A1 sin πZ , begins to grow exponentially. Eventually,
this component excites the B and C fields, which then also grow exponentially in
response. When nonlinearity becomes sufficiently important, this feeds back into the
A-equation, causing A to abruptly decrease superexponentially. This returns the
system to low amplitude in A and the cycle repeats. This kind of behaviour is
familiar from the dynamics of coupled oscillators (Cessi, Spiegel & Young 1990).

Phase portraits of the bursting cycles are shown in figure 18. One interesting feature
of the cycle is that it is doubly looped. That is, one might identify it as ‘period-2’. We
have not attempted to follow the orbit in parameter space and identify where this
cycle originates. The cycle is also interesting in view of the additional ‘wiggles’ that
develop in the orbit as we raise γ. This suggests that the orbit is becoming attracted
to an object like a saddle focus, and is beginning to wind around its stable manifold.
The dynamics of the system that this suggests (e.g. Balmforth 1994) is provocative,
but we will not go further in exploring this here.

The two attractors continue to co-exist as we raise γ further. Eventually, however,
both appear to lose stability. At γ = 1430, the equilibrium solution loses stability in
a Hopf bifurcation. This bifurcation is apparently supercritical (see figure 19), and
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Figure 19. Phase portrait for γ = 1500 projected onto the (|A|2,B) plane. After a brief transient,
the solution converges to a limit cycle which is not far from the fixed point. The latter is shown as
an asterisk and serves as the initial condition for this time integration.

another limit cycle (in |A(1/2, T )|) emerges. The bursting state also loses stability
somewhere below γ = 1500. The result of this bifurcation is the state shown in
figure 20. This solution still bursts in time, but, as is shown in figure 20, the bursts are
irregular and no longer spatially symmetric. Here, vigorous convection sporadically
appears at points all over the slot; also, there remains some tendency for the bursts
to migrate vertically.

Finally, we point out that the bursting solution is typically the attractor that the
system evolves to if the initial condition is one of low amplitude and γ is in the
range 600–1000 (see figure 17). Hence, in practical situations, this is the state that one
might find if one prepares the system in a quiescent state. In other words, the system
might appear to undergo a hard transition and abruptly undergo sharp bursts as we
introduce instability. This does not, however, signify subcritical linear instability.

9. Conclusion
We have conducted a study of linear stability for thermohaline convection in a

tall thin slot, using a variety of boundary conditions. We observed that long-wave
instability is a frequent occurrence, though it is not ubiquitous. Then, we derived
long-wave equations for weakly nonlinear disturbances. The most general form of
these equations is the ABC set given in §4.1.1; this contains all other variants of the
problem, such as the A system of §4.1.3 and the Appendix, as special cases and includes
a variety of other, more well known equations. Just as the complex Ginzburg–Landau
equation governs the modulation of any finite- or short-wavelength patterns, so too
the equations derived herein govern the evolution of general systems whose primary
instability is of large length scale.
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Figure 20. Space–time surface plot of |A| for γ = 1500. Amplitude is on the vertical axis and time
increases to the right. The bursting solutions are both spatially asymmetric and temporally erratic.

Both the ABC system and the A-equation have stable equilibrium states just beyond
the threshold of instability, and solutions that become complicated in both space and
time, once the instability parameter becomes sufficiently large. There are multiple
possible states for the system which suggests there may be pronounced hysteresis.
Thus, the long-wave equations predict that doubly diffusive slot convection can take
the form of a variety of different states from regular oscillatory patterns to irregular
bursting events.

The ABC and A systems provide an interesting alternative to the usual complex
Ginzburg–Landau style of weakly nonlinear theory which is often used in modelling
spatio-temporal complexity. We emphasize that our study of the nonlinear dynamics
has not been especially systematic. Our solutions suggest that the system possesses a
wide range of behaviour, but we have only initiated the study of these systems, and
hope we have provided some motivation for future work. For example, the various
limits and dynamics of the equations offer exciting prospects: in certain limits we
may open perturbation expansions that could help us understand the complicated
dynamics, much as the dispersive limit of the complex Ginzburg–Landau equation
has been utilized in the past.

In conclusion, we return to the fluid dynamics of the various problems that mo-
tivated this study. In any particular situation, the details of the original physical
problem are most important, especially since we have seen that the boundary con-
ditions can play a decisive role. This contrasts with the somewhat general approach
we have taken here. None the less, one can attempt to draw some more general
physical conclusions. One such important conclusion is that the convection will take
the form of rolls that fill the slot, or become spatially irregular and burst locally.
This prediction might seem a little difficult to reconcile with the observation that, in
many situations, doubly diffusive instability leads to the formation of a thermohaline
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staircase (Turner 1985); that is, persistent layers of overturning cells separated by
diffusive interfaces. The reason why our system has not shown a tendency to form a
staircase might be understandable in that layering is associated with strong instability,
whereas we have been working in mildly supercritical conditions. Alternatively, in
many situations, the boundary conditions are equivalent to fixed temperature, but no
salt flux. This situation corresponds to an AC system, which is nonlinearly unstable;
thus there may be a hard transition (one out of the applicability of our theory) that
leads to layer formation.

Further experiments might help in understanding this apparent disagreement, but,
as we noted at the outset, such experiments are quite difficult. The one which served
as the motivation for this analysis (Biello 1996) was not executed very carefully
and its failure should not be construed as a warning against such experiments, but
rather as a challenge to clever experimentalists. In fact, there are other, more realistic
experimental arrangements in which one could attain the necessary initial conditions
to compare with our weakly nonlinear theory. For example, a slender, tall Hele-Shaw
cell with a plate to one side would help to maintain the vertical temperature gradient
and horizontal uniformity. Another might involve an aparatus exploiting a porous
medium in which the substrate can itself help to maintain a horizontally uniform
background temperature field. Finally, a thin cylindrical geometry (cf. Normand, 1984)
could facilitate the constant, horizontally uniform, vertical temperature gradient which
is the most difficult feature to achieve in all experiments.

This work began at the 1996 Geophysical Fluid Dynamics summer school at
Woods Hole Oceanographic Institution; we thank Steve Meacham, the director, and
all the participants for a productive summer. We thank W. R. Young and Y.-N.
Young for helpful discussions. N.J.B. thanks the Green Foundation for support.
J.A.B. acknowledges support from an NSF Graduate Fellowship.

Appendix. The fixed temperature and salinity system (the A-equation)
In this Appendix we describe some of the details of the A system. Rather than take

the full equation of §4.2.2, for simplicity, we consider the simpler equation deriving
from slaving the B- and C-modes according to §5.1. Hence we write the amplitude
equation in the form

AT = γA+ ηAZZ + ΓA|A|2ZZ . (A 1)

As for the ABC system we discuss certain limits of this equation, then describe some
equilibrium solutions.

A.1. Some limits

There are two limits of the A-equation that are of special interest. These correspond
to variational and conservative forms.

A.1.1. Real parameters

If γ, η and Γ are purely real, then the system has a Lyapunov functional

L[A] =

∫ 1

0

[
1

2
Γ (|A|2Z )2 + η|A|2Z − γ|A|2

]
dZ. (A 2)

(From the equation of motion, one can show that this function must decay in time,
and since the domain is finite, with side conditions, A = 0, it is bounded from below.)
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Figure 21. Equilibrium solutions for the A system. Shown are equilibria at γ = 175 to 525
in steps of 25.

Thus the system asymptotically tends towards a state minimizing the integrand. This
will be the lowest-order equilibrium solution, though in the relaxation process there
may be prolonged meta-stable states just as in real Ginzburg–Landau theory (e.g.
Balmforth 1995). Steady solutions for this special case are given by Normand (1984).

A.1.2. Imaginary parameters

If γ, η and Γ are all purely imaginary, then we may introduce a frequency factor
and rescale the equation into the form

iAT = AZZ + A|A|2ZZ ; (A 3)

that is, a long-wave analogue of the nonlinear Schrödinger equation. To find steady
solutions, we introduce the solution A = a(Z)eiΩT and integrate to find the energy-like
constant

E = 1
2
a2
Z + 1

4
(a2)2

Z + 1
2
Ωa2. (A 4)

Thence we may reduce the construction of the equilibrium solutions to a quadrature.
However, simple phase plane arguments indicate that there are only ever periodic
solutions in Z , and no solitary waves. One can further write the A system in a
Hamiltonian form in this limit. However, this is not the place to continue such a
discussion.

A.2. Equilibria and secondary stability

As for the ABC system we can again construct equilibrium solutions in both periodic
and bounded domains. The periodic solutions, however, are rather special in the
equation (A 1) since the nonlinear term always vanishes when A ∝ exp iKZ . In other
words, the linear modes are exact nonlinear solutions of the equation, a somewhat
unappealing state of affairs should they be unstable. We therefore consider only the
bounded domain and construct solutions numerically.

Figure 21 shows the (n = 1) gravest equilibrium solution for various values of γ.
In line with our earlier choice of parameters for case (ii), we take η = (15, 4) and
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Γ = 0.06 + i. As for the ABC system, secondary instability is commonplace. For the
solutions shown in figure 21, this occurs for γ ' 486.5. Beyond this bifurcation, the
solution relaxes to a higher-order (n = 2) equilibrium state, but more complicated
dynamics can arise for different parameter settings. Also, when γ is sufficiently large,
temporally complicated solutions appear. Hence the A system also appears to have a
rich range of dynamical behaviour.
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